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Given a set of data points belonging to the convex hull of 
a set of vertices, a key problem in linear algebra, signal 
processing, data analysis and machine learning is to estimate 
these vertices in the presence of noise. Many algorithms have 
been developed under the assumption that there is at least one 
nearby data point to each vertex; two of the most widely used 
ones are vertex component analysis (VCA) and the successive 
projection algorithm (SPA). This assumption is known as 
the pure-pixel assumption in blind hyperspectral unmixing, 
and as the separability assumption in nonnegative matrix 
factorization. More recently, Bhattacharyya and Kannan 
(ACM-SIAM Symposium on Discrete Algorithms, 2020) 
proposed an algorithm for learning a latent simplex (ALLS) 
that relies on the assumption that there is more than one 
nearby data point to each vertex. In that scenario, ALLS is 
probabilistically more robust to noise than algorithms based 
on the separability assumption. In this paper, inspired by 
ALLS, we propose smoothed VCA (SVCA) and smoothed 
SPA (SSPA) that generalize VCA and SPA by assuming the 
presence of several nearby data points to each vertex. We 
illustrate the effectiveness of SVCA and SSPA over VCA, 
SPA and ALLS on synthetic data sets, on the unmixing of 
hyperspectral images, and on feature extraction on facial 
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images data sets. In addition, our study highlights new 
theoretical results for VCA.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Low-rank matrix factorization is a widely used class of unsupervised data analy-
sis models. Examples include principal component analysis [1], independent component 
analysis [2], sparse component analysis [3], and nonnegative matrix factorization [4], to 
cite a few. In this paper, we focus on the following matrix factorization model: given a 
set of data points within the convex hull of a set of vertices, estimate these vertices in 
the presence of noise. This problem can be formulated as follows.

Problem 1. Given X = WH + N ∈ Rm×n where H ∈ Rr×n
+ is column stochastic and N

is the noise, estimate W ∈ Rm×r.

Note that W , H and N are unknown, only X is given. In this paper, we focus on 
the estimation of W . Once W is estimated, the matrix H can be estimated by solv-
ing a convex nonnegative least squares problem. Problem 1 is sometimes referred to 
as simplex-structured matrix factorization (SSMF), and generalizes nonnegative matrix 
factorization (NMF); see [5] and the references therein. It is also closely related to semi-
NMF that only requires H to be nonnegative but not column stochastic [6]. Problem 1 is 
closely related to the column subset selection problem (see, e.g., [7,8] and the references 
therein), but the additional assumptions allow us to tackle it using convex geometry 
concepts.

In Problem 1, the columns of W are the vertices, while the columns of X are noisy 
data points within the convex hull of the columns of W ,

conv(W ) = {x | x = Wy, y ≥ 0, e�y = 1},

where e is the vector of all ones of appropriate dimension, and � is the transpose of a 
vector or a matrix. In fact, for all j,

X(:, j) = WH(:, j) + N(:, j),

where X(:, j) denotes the jth column of X, H(:, j) ≥ 0 and e�H(:, j) = 1 (since H is 
column stochastic), which means that X(:, j) −N(:, j) ∈ conv(W ) for all j. To be able 
to estimate W in Problem 1, appropriate assumptions on W , H and N are required. In 
particular, the following assumptions are necessary [5]:

• No column of W is contained in the convex hull of the other columns of W , otherwise 
it is not possible to distinguish it from a data point.
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• The data points must be sufficiently spread within conv(W ), having data points on 
each facet of conv(W ). This implies some degree of sparsity for H.

• The noise N must be bounded.

To obtain provable or practical algorithms, the above assumptions must be carefully 
and rigorously complemented. Different assumptions on W , H, and N lead to different 
models for which different algorithms can be designed; see Section 2 for a literature 
review. We discuss below some applications of such algorithms.

Applications in data analysis and machine learning. The papers [9] and [10] describe 
in details various applications of solving Problem 1; in particular topic modeling via la-
tent Dirichlet allocation, adversarial clustering and community detection via the mixed 
membership stochastic block model. Moreover, Problem 1 generalizes NMF and as 
such could be useful for all applications of NMF, such as feature extraction in sets 
of images [11], audio source separation [12], chemometrics [13], or blind hyperspectral 
unmixing (HU) [14,15]. Although the model considered in this work is very generic, we 
are motivated mainly by blind HU, a key problem in remote sensing. Let us briefly de-
scribe this problem; see the survey papers by [16,17] and the references therein for more 
details.

Blind hyperspectral unmixing. A hyperspectral image (HSI) is a picture of a scene ac-
quired within a large number of spectral bands (usually between 100 and 200). Thus, 
for each pixel a precise electromagnetic spectrum is recorded, which gives an informa-
tion concerning the materials present in the pixel; specifically, about their reflectances 
(fraction of incoming light they reflect) and/or their emissivity (which is due to the fact 
that the materials usually have non-zero temperatures). Unfortunately, despite their high 
spectral resolution, hyperspectral sensors generally have a low spatial resolution; as such, 
the spectrum recorded for each pixel might not correspond to the one of a single mate-
rial, but rather to a mixture of the spectra of the different materials present within the 
pixel.

Given an HSI, blind HU thus aims to recover the set of materials present in the image, 
called endmembers, along with the abundances of each endmember in each pixel. The 
standard model used to solve blind HU is the linear mixing model. It assumes that the 
spectral signature of each pixel is a linear combination of the spectral signatures of the 
endmembers, where the weights of the linear combination are the abundances of the 
endmembers in the pixel. Typically, we represent a hyperspectral image as a matrix X, 
where the jth column, X(:, j), corresponds to the spectral signature of the jth pixel in 
the scene. If the spectral signatures of the endmembers are also collected as the columns 
of a matrix W , then according to the linear mixing model, the jth pixel can be written 
as X(:, j) ≈

∑r
k=1 W (:, k)H(k, j) + N(:, j), where H(k, j) is the abundance of the kth 

endmember in the jth pixel, and N(:, j) represents the noise and model misfit. This is 
exactly the setup of Problem 1.
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Pure-pixel assumption. An important class of algorithms to solve blind HU are pure-
pixel search algorithms. They rely on the assumption that for each endmember, there 
is at least one pixel in which this endmember appears almost alone, that is, purely, so 
that the endmember signature is close to the one of the corresponding pure pixel. Two 
of the most effective and widely used pure-pixel search algorithms are vertex component 
analysis (VCA) [18] and the successive projection algorithm (SPA) [19] which will be 
described in Section 2.

Terminology. In the NMF literature, the pure-pixel assumption is referred to as sepa-
rability, and the corresponding algorithms are referred to as separable NMF algorithms, 
or near-separable NMF algorithms. Geometrically, the pure-pixel assumption requires 
that there is a data point (that is, a column of X), close to each vertex (that is, to each 
column of W ). We will refer to such a data point as pure when the corresponding column 
of H is a unitary vector (that is, a column of the identity matrix).

Contribution and outline. When the separability assumption holds, there are typically 
more than one data point close to each vertex. In this paper, we leverage this observa-
tion by adapting VCA and SPA, providing two new algorithms, namely smoothed VCA 
(SVCA) and smoothed SPA (SSPA). The idea is to aggregate (for instance average) sev-
eral data points around a vertex to obtain a better estimate of that vertex. In practice, 
it enables our two smoothed algorithms to achieve much better separation results than 
their non-smoothed counterparts, and to be more tolerant to noise.

SVCA can also be interpreted as an adaptation of the algorithm for learning a latent 
simplex (ALLS) proposed by [9], with two major modifications that we detail in Section 3. 
This observation allows us to provide theoretical guarantees for SVCA, and hence VCA 
which is a special case of SVCA. To the best of our knowledge, this is the first time a 
theoretical guarantee for VCA is provided in the presence of noise.

We believe that this work paves the way for a whole new branch of smoothed separable 
NMF algorithms. Although we focus in this work on VCA and SPA, two of the most 
well-known separable NMF algorithms, it is straightforward to extend the methodology 
to more recent algorithms such as SNPA [20].

The paper is organized as follows. In Section 2, we summarize the literature for solving 
Problem 1, with a focus on three algorithms, namely VCA, SPA and ALLS. In Section 3, 
we propose SVCA which is equivalent to applying VCA on a smoothed data set. SVCA 
is similar to ALLS, but two key differences make it empirically more efficient than ALLS. 
In Section 4, we propose SSPA which adapts SPA in the presence of multiple pure pixels. 
In Section 5, we show on synthetic and real-world hyperspectral data sets that SVCA 
and SSPA outperform VCA, SPA and ALLS in the presence of multiple pure pixels.

Notation. Given an m-by-n real matrix X ∈ Rm×n, X� is its transpose, X(:, j) is its 
jth column, X(i, :) is its ith row, X(i, j) is its entry at position (i, j), X(:,K) is the 
submatrix made of the columns of X in the index set K, and similarly for X(K, :) for 
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the rows. The ith singular value of X is denoted σi(X), while K(W ) = maxj ‖W (:, j)‖2. 
If a matrix X is component-wise nonnegative, we write X ≥ 0. The vector of all ones is 
denoted e. The m-by-m identity matrix is denoted Im.

2. Simplex-structured matrix factorization

In this section, we describe existing models and algorithms to solve Problem 1, that 
is, to solve SSMF, in order to identify the vertices of the convex hull of a set of data 
points, X. We focus on two key models, upon which our contribution is built:

1. Separable NMF: it assumes there is one data point close to each vertex of conv(W ), 
and that the noise added to each data point is bounded; see Section 2.1. Some authors 
refer to this model as near-separable NMF.

2. Learning a latent simplex: it is motivated by machine learning applications. It as-
sumes that there is more than one data point close to each vertex of conv(W ), but it 
allows much larger noise levels as it only requires the �2 norm of N to be bounded, 
instead of each individual column; see Section 2.2.

Other models and algorithms exist to tackle Problem 1 relying on different as-
sumptions. It is worth mentioning minimum-volume NMF [21], where W is regularized 
such that its convex hull conv(W ) has the smallest possible volume, facet-based iden-
tification algorithms that identify the facets of conv(W ) from which its vertices are 
recovered [22–24,5], and probabilistic simplex component analysis [25] that relies on a 
probabilistic model on the data (the columns of H are sampled using the Dirichlet dis-
tribution, and the entries of N using i.i.d. Gaussian noise). Discussing these approaches 
in detail is out of the scope of this article, whose focus is on the separable NMF problem.

2.1. Model 1: separable NMF

As already mentioned, an important class of NMF algorithms relies on the separability 
assumption, defined as follows.

Assumption 1 (Separability). In Problem 1, there exists an index set K of cardinality r
such that H(K, :) = Ir where Ir is the r-by-r identity matrix.

Under this assumption, solving Problem 1 amounts to recover K such that

X(:,K) = W + N(:,K) ≈ W.

In blind HU, separability is known as the pure-pixel assumption.
The early algorithms building on this assumption emerged in the blind HU community. 

They include pixel purity index (PPI) [26], N-FINDR [27], and vertex component analysis 
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(VCA) [18]. Most of these algorithms were developed based on convex geometry concepts. 
These early works however did not analyze noise robustness, and in fact they are not 
guaranteed to recover the endmembers in the presence of noise.

In analytical chemistry, Problem 1 is closely related to the problem of self-modeling 
curve resolution [28]. As in blind HU, several algorithms were developed based on geom-
etry concepts; in particular the successive projection algorithm (SPA) [19].

More recently, and motivated by applications in machine learning (in particular, topic 
modeling where pure data points are referred to as anchor words), [29] introduced the 
first provably robust separable NMF algorithms. Their robustness is deterministic: un-
der some conditions, their algorithm is guaranteed to recover an approximation of the 
vertices. Arora et al. were not aware of the algorithms developed within the blind HU 
literature. Many provably robust algorithms have followed this seminal paper, including 
algorithms that use linear programming [30–32], a generalization of SPA [33], fast anchor 
words [34], and the successive nonnegative projection algorithm (SNPA) [20]. These de-
terministically robust algorithms guarantee that, in the presence of noise, the vertices are 
recovered, up to some error bounds that depend on the noise level and the conditioning 
of W ; see Section 2.1.2 for such a result for SPA. We refer the interested reader to [4, 
Chapter 7] for a detailed discussion and comparison of these algorithms.

In the following, we describe in more detail VCA and SPA that will be instrumental 
in proposing our new algorithms, smoothed VCA in Section 3 and smoothed SPA in 
Section 4.

2.1.1. Vertex component analysis
VCA [18] is a greedy separable NMF algorithm, that is, it identifies the indices of 

the subset K sequentially. The index set is initialized with K = ∅. At each of the r
iterations of VCA, a random direction belonging to the subspace spanned by the r top 
left singular vectors of X is generated (this is equivalent to working with the best rank-r
approximation of X, and hence filters the noise). This direction is then projected onto 
the orthogonal complement of X(:, K), and the index of the column of X that maximizes 
the absolute value of the inner product with that direction is added to K. Algorithm 1
summarizes VCA.

The computational cost of VCA is O(r nnz(X)) operations, where nnz(X) is the 
number of non-zero entries of X. The main cost is to compute Y which can be done 
efficiently using the subspace power iteration, in O(nnz(X)r) operations, and to compute 
the products (d�k P⊥)X at each of the r iterations.

An important drawback of VCA is that it is not guaranteed to be deterministically 
robust to noise. In other words, for any noise N such that a data point goes outside 
conv(W ), there is a non-zero probability that VCA extracts this point. The reason is 
that VCA uses a linear function to identify the vertices of conv(W ); see [4, Chapter 7.4]
for a numerical example.
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Algorithm 1 Vertex Component Analysis (VCA) [18].
Require: The matrix X ∈ Rm×n, the number r of columns to extract.
Ensure: Index set K of cardinality r such that X ≈ X(:, K)H for some H ≥ 0.

1: Let K = ∅, P⊥ = Im, V = [ ].
2: Let the column of Y ∈ Rm×r be the top r left singular vectors of X.
3: for k = 1 : r do
4: Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g., dk ∼ YN (0, Ir) where N (0, Ir)

is the normal distribution of mean 0 and covariance matrix Ir.
5: Compute uk = (d�

k P⊥)X ∈ Rn, and let jk = argmax1≤j≤n |uk(j)|.
6: Let K = K ∪ {jk}.
7: Update the projector P⊥ onto the orthogonal complement of W = X(:,K):

vk =
P⊥X(:, jk)

‖P⊥X(:, jk)‖2
,

V = [V vk],

P
⊥ ←

(
Im − V V

�
)
.

8: end for

2.1.2. Successive projection algorithm
SPA [19] is very similar to VCA. The only difference is in the selection step, when 

adding an index to K. SPA selects the column of P⊥X with maximum �2 norm; see 
Algorithm 2.

Algorithm 2 Successive Projection Algorithm (SPA) [19].
Require: The matrix X ∈ Rm×n, the number r of columns to extract.
Ensure: Index set K of cardinality r such that X ≈ X(:, K)H for some H ≥ 0.

1: Let K = ∅, P⊥ = Im, V = [ ].
2: Let u1(j) = ‖X(:, j)‖2

2 for all j.
3: for k = 1 : r do
4: Let jk = argmax1≤j≤n uk(j). (Break ties arbitrarily, if necessary.)
5: Let K = K ∪ {jk}.
6: Update the projector P⊥ (as in step 7 of Algorithm 1).
7: Update the squared norms of the columns of P⊥X: for all j,

uk+1(j) = uk(j) − v
�
k X(:, j) = ‖P⊥

X(:, j)‖2
2.

8: end for

It is interesting to note that VCA is equivalent to SPA if the direction uk randomly 
chosen at each step is instead taken as the column of the residual P⊥X with maximum 
�2 norm. We will use this observation for our proposed algorithm, smoothed SPA.

Remark 1 (On the projection P⊥). As opposed to VCA, SPA does not work on the 
subspace spanned by the first r singular vectors of X, and hence we stick to this variant 
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in this paper. However, in practice, projecting the data onto this subspace allows noise 
filtering and typically leads to better numerical performance.

Robustness of SPA. As opposed to VCA, SPA is deterministically robust to noise, 
provided the following assumption on top of separability (Assumption 1):

Assumption 2 (Column-wise bounded noise). In Problem 1, the noise satisfies ‖N(:
, j)‖2 ≤ ε for all j for some ε > 0 sufficiently small.

Let us state the robustness result for SPA.

Theorem 1. [33, Theorem 3] Let X = WH +N as in Problem 1, and let Assumptions 1
and 2 be satisfied, that is, W = X(:, K∗) for some index set K∗ of cardinality r, and 

‖N(:, j)‖2 ≤ ε for all j where ε ≤ O
(

σ3
r(W )√

rK(W )2

)
with K(W ) = maxj ‖W (:, j)‖2. Let 

also the rth singular value of W be positive, that is, σr(W ) > 0, meaning that W has 
rank r. Let K be the index set extracted by SPA. Then there exists a permutation π of 
{1, 2, . . . , r} such that for all k = 1, 2, . . . , r,

‖X(:,K(k)) −W (:, π(k))‖2 ≤ O
(
εK(W )2

σ2
r(W )

)
,

where K(k) denotes the kth index in K.

Note that the bounds in Theorem 1 are relatively weak: the noise level has to be 
rather small to guarantee SPA to recover W approximately.

2.2. Model 2: learning a latent simplex

A drawback of separable NMF algorithms, such as VCA and SPA, is that they assume 
that there is only one data point close to each column of W . Therefore, to estimate W , 
the column-wise bounded noise assumption (Assumption 2) is necessary; see Theorem 1. 
This is a rather strong assumption, often not met in practical situations as typically 
many data points are affected by large amounts of noise.

The paper [9] rather proposes to leverage the fact that typically more than one data 
point are close to each column of W . This assumption, which is stronger than the pure-
pixel one (requiring only a single pure-pixel), allows higher noise levels. It is called the 
proximate latent points assumption, and is defined as follows.

Assumption 3 (Proximate latent points). In Problem 1, there exists r index sets, Kk for 
k = 1, 2, . . . , r, of cardinality at least p = δn such that
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‖WH(:, j) −W (:, k)‖2 ≤ 4σ
δ

for all j ∈ Kk,

for some δ ∈
[ 1
n ,

1
r

]
and σ > 0.

Under this assumption, instead of looking for one column of X to represent each 
vertex, like in VCA and SPA, algorithms should look for p of them and then estimate 
each vertex as the average of these p data points. We will refer to such algorithms as 
smoothed separable NMF algorithms. The main contribution of this paper is to propose 
two new such algorithms; in Sections 3 and 4.

This assumption is often met in the machine learning applications mentioned in Sec-
tion 1; see the discussions in [9,10]. For high-resolution HSIs that satisfy the pure-pixel 
assumption, there are typically more than one pixel close to each endmember. This claim 
will be validated numerically in Section 5.2.

2.2.1. Algorithm for learning a latent simplex
To solve Problem 1 under Assumption 3, [9] proposed an algorithm similar to VCA, 

which we refer to as the algorithm for learning a latent simplex (ALLS). The main 
difference between ALLS and VCA is the selection step. Instead of picking a single 
column of X, ALLS averages over p columns for some p ∈

{
1, 2, . . . , �n

r 	
}
. More precisely, 

ALLS picks the p columns corresponding to the indices that maximize the absolute value 
of uk; see Algorithm 3.

The idea behind ALLS is to apply VCA on a smoothed data set. This smoothed data 
set is made of 

(
n
p

)
data points which are the averages of all possible combinations of 

p data points, that is, p columns of X. Of course, constructing this smoothed data set 
explicitly is not practical, since 

(
n
p

)
grows exponentially. However, by the linearity of the 

selection step in VCA, this is not necessary: the smoothed data point that maximizes a 
linear function is the average of the p data points that have the p largest values for that 
function. Algorithm 3 summarizes ALLS.

Algorithm 3 Algorithm for Learning a Latent Simplex (ALLS) [9].
Require: The matrix X ∈ Rm×n, the number r of columns of W , the number p of columns of X to be 

averaged to obtain each column of W .
Ensure: A matrix W ′ such that X ≈ W ′H for some H ≥ 0.

1: Let W ′ = [ ], P⊥ = Im, V = [ ].
2: Let the column of Y ∈ Rm×r be the top r left singular vectors of X.
3: for k = 1 : r do
4: Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g., dk ∼ YN (0, Ir).
5: Compute uk =

(
d�
k P⊥

)
X ∈ Rn.

6: Let Sk be the set of p indices corresponding to the largest coordinates of uk in absolute value.
7: Let W ′(:, k) average of the columns of X(:, Sk).
8: Update the projector P⊥ (as in step 7 of Algorithm 1).
9: end for
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Note that ALLS with p = 1 is equivalent to VCA.

Computational cost. The only additional cost of ALLS compared to VCA is to average 
p columns of X, which requires r times O(pm) operations, which is negligible since 
p 
 n ≤ nnz(X).

2.2.2. Probabilistic robustness of ALLS
Let us describe the assumptions needed to prove the probabilistic robustness of ALLS. 

The condition on W is defined as follows:

Assumption 4 (Well-separatedness of W ). In Problem 1, the matrix W satisfies

α(W ) = mink=1,2,...,r minx ‖W (:, k) −W (:, k̄)x‖2

K(W ) > 0, (1)

where k̄ = {1, 2, . . . , r}\{k}.

Assumption 4 holds if and only if rank(W ) = r, in which case conv(W ) is a simplex, 
that is, a polytope of dimension r− 1 with r vertices (hence the name of the algorithm).

The condition on the noise is as follows.

Assumption 5 (Spectrally bounded perturbations). In Problem 1,

‖N‖2 = σ1(N) ≤ σ
√
n,

where there exists some constant c such that

σ ≤ α2
√
δ

c r9 min
j

‖W (:, j)‖2, (2)

where α = α(W ) is defined in Assumption 4, and δ and σ in Assumption 3 (recall, p = δn

is the number of data points close to each column of W ).

It is key to note here that the noise allowed is not column wise as in Assumption 2, 
but on the spectral norm of N , which is rather different.

We can now state the robustness theorem for ALLS.

Theorem 2. [9] Let us consider Problem 1 under Assumptions 3 (proximate latent points), 
4 (well-separatedness of W ) and 5 (spectrally bounded perturbations). Then, with prob-
ability at least 1 − c/r3/2, ALLS computes a matrix W ′ such that upon permutation of 
its columns, for all k = 1, 2, . . . , r,

‖W (:, k) −W ′(:, k)||2 ≤ O

(
r4σ√

)
. (3)
α δ
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Note that substituting (2) in (3) gives

‖W (:, k) −W ′(:, k)||2 ≤ O
( α

c r5

)
min
j

‖W (:, j)‖2.

Implications for VCA. Interestingly, since ALLS for p = 1 coincides with VCA, Theo-
rem 2 provides a probabilistic robustness result for VCA which is unknown in the blind 
HU literature.

2.2.3. Bounds of SPA versus ALLS
Theorem 2 might look somewhat weak because of the dependence in r9 in the 

bound (2) for σ. However, it is not known whether this bound is tight, although it is 
believed it could be improved [9,10]. A similar comment applies to SPA. Moreover, these 
bounds assume an adversarial setting, and noise robustness under particular generative 
models is also an interesting direction of research, as in [25].

In any case, Theorem 2 only requires a bound on ‖N‖2 while SPA requires each column 
of the noise matrix N to be bounded, indicating that ALLS should perform better, in 
general, when p is sufficiently large. Since the theory is still not fully developed and the 
tightness of the theoretical bounds should be carefully studied, it is important to compare 
these algorithms empirically to shed light on their differences on practical problems; this 
will be done in Section 5.

3. Smoothed VCA

Inspired by VCA, and ALLS, we now propose smoothed VCA (SVCA); see Algo-
rithm 4. SVCA has two key important differences compared to ALLS:

1. At step k, ALLS selects the p entries maximizing the absolute value of the vector of 
uk, obtained as the inner product of X and a randomly generated direction d�k P

⊥; 
see steps 5-6 of Algorithm 3. This is not equivalent to maximizing (or minimizing) 
the linear function l(x) = d�k P

⊥x over the smoothed polytope. In fact, by using 
the absolute value, this approach could select data points in opposite directions. 
For example, take the simple case with two vertices w1 = (−1, 0) and w2 = (1, 0). 
For any direction d, we have |d�w1| = |d�w2| and hence it is very likely that data 
points close to both vertices will maximize |d�x|, and their average will be a poor 
approximation of both vertices.
Instead, to maximize (or minimize) l(x), one should select the p indices maximizing 
uk (or −uk). In SVCA, we therefore propose to select the p indices that maximize 
(resp. minimize) uk if the median of the p largest values is larger (resp. smaller) than 
the absolute value of the median of the p smallest values of uk. We have observed in 
practical experiments that this modification of ALLS is crucial to obtain competitive 
results in real-world hyperspectral images. In fact, we will see that SVCA outper-
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forms ALLS, and the main reason is this modified selection step, see lines 6 to 10 of 
Algorithm 4.

2. Instead of averaging p columns of X at each step, we will also consider taking their 
median. This allows SVCA to be much more tolerant to non-Gaussian noise, such as 
gross corruptions and outliers, which are often present in HSI. While in the presence 
of Gaussian noise, using the average might in principle lead to the best unmixing 
results, the choice of a different aggregation function might still be appealing on real 
world data sets, in which the linear mixing model is not always perfectly accurate. 
In this context, other aggregation functions might be more robust to the model 
imperfections (this is for instance the case in HSI, where the data sets sometimes 
exhibit spectral variabilities – an aggregation function enabling to reduce the pure 
pixel variabilities impact would be appealing). Using the median also allows SVCA 
to be more tolerant to a misspecified value of p. For example, assume a scenario 
where there are exactly p′ data points close to each vertex. For p < p′, one does not 
leverage optimally the presence of multiple pure data points. On the other side, as 
soon as p is larger than p′, ALLS will perform rather badly because it will average p′

data points close to a vertex and p − p′ data points potentially far away. If instead 
one takes the median, the algorithm remains able to extract the vertices accurately 
for any p < 2p′. In practice, as we will show in Section 5, using the median performs 
significantly better on real data sets.

Note that SVCA has the same computational cost as VCA, SPA and ALLS, namely 
O(rnnz(X)) operations.

Algorithm 4 Smoothed Vertex Component Analysis (SVCA).
Require: The matrix X ∈ Rm×n, the number r of columns of W ∈ Rm×r, the number p of columns of X

to be averaged to obtain each column of W , the aggregation method (median or mean).
Ensure: A matrix W such that X ≈ WH for some H ≥ 0.

1: Let W = [ ], P⊥ = Im, V = [ ].
2: Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors of X.
3: for k = 1 : r do
4: Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g., dk ∼ YN (0, Ir).
5: Compute uk =

(
d�
k P⊥

)
X ∈ Rn.

6: if the median of the p largest values of uk is larger than the absolute value of the median of the p
smallest values of uk then

7: Let Sk be the set of p indices maximizing uk.
8: else
9: Let Sk be the set of p indices minimizing uk.

10: end if
11: Let W (:, k) be the median (or the mean) of the columns of X(:, Sk).
12: Update the projector P⊥ (as in step 7 of Algorithm 1).
13: end for
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Recovery guarantees for SVCA. SVCA is very similar to ALLS, and in fact the ro-
bustness analysis of ALLS applies to SVCA, that is, Theorem 2 applies to SVCA. The 
reason is that we guarantee SVCA to extract the data point in the smoothed data set 
that maximizes the absolute value l(x) = d�k P

⊥x.

4. Smoothed SPA

Since SVCA is equivalent to VCA for p = 1, it is not guaranteed to be determinis-
tically robust to noise. This motivates us to propose smoothed SPA; see Algorithm 5. 
Unfortunately, it is not practical to apply SPA directly on the smoothed data set. Indeed, 
it would require to find the p columns of the smoothed data set with the largest �2 norm. 
The �2 norm being a nonlinear function, it would require to explicitly compute the 

(
n
p

)
data points of the smoothed data set, which is computationally prohibitive.

Instead, we replace the random selection of uk = YN (0, 1) in SVCA by the selection 
of the column of the residual P⊥X with maximum �2 norm, that is, uk = P⊥X(:, jk)
for some jk so that ‖uk‖2 ≥ ‖P⊥X(:, j)‖2 for all j. This allows us to combine the best 
of ‘both worlds’: deterministic robustness under separability when p = 1, and the use of 
the proximate latent point assumption when p > 1 (Assumption 3).

Algorithm 5 Smoothed Successive Projection Algorithm (SSPA).
Require: The matrix X ∈ Rm×n, the number r of columns of W ∈ Rm×r, the number p of columns of X

to be averaged to obtain each column of W , the aggregation method (median or mean).
Ensure: A matrix W such that X ≈ WH for some H ≥ 0.

1: Let W = [ ], P⊥ = Im, V = [ ].
2: Let u1(j) = ‖X(:, j)‖2

2 for all j.
3: for k = 1 : r do
4: Let jk = argmax1≤j≤n uk(j). (Break ties arbitrarily, if necessary.)
5: Let dk = X(:, jk).
6: Compute uk = (d�

k P⊥)X ∈ Rn.
7: if maxi uk(i) ≥ − mini uk(i) then
8: Let Sk be the set of p indices maximizing uk.
9: else

10: Let Sk be the set of p indices minimizing uk.
11: end if
12: Let W (:, k) be the median (or the mean) of the columns of X(:, Sk).
13: Update the projector P⊥ (as in step 7 of Algorithm 1).
14: Update the squared norms of the columns of P⊥X: for all j,

uk+1(j) = uk(j) − v
�
k X(:, j) = ‖P⊥

X(:, j)‖2
2.

15: end for

Recovery guarantees for SSPA. For p = 1, SSPA coincides with SPA, and hence The-
orem 1 applies to SSPA for p = 1, that is, it is deterministically robust to column-wise 
bounded noise. However, since the selection step of SSPA is deterministic, Theorem 2
does not apply to SSPA. A promising direction of further research would be to analyze 
noise robustness of SSPA for p > 1.
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Should you use SVCA or SSPA? SVCA has the advantage to be a randomized algo-
rithm, and hence can be run multiple times and the best solution, according to some 
criterion, can be kept. SSPA is deterministic and has the advantage to have stronger 
theoretical guarantees for p = 1. From a practical point of view, one could run SVCA 
several times, and SSPA once, and then keep the best solution.

Comparing algorithms. In this paper, when the ground truth W ∗ is not available, we 
will use the following criterion

QF (W ) = minH≥0 ‖X −WH‖F
‖X‖F

∈ [0, 1],

to evaluate the quality of a solution W . Note that we do not use the sum-to-one con-
straint, H�e = e, because, in many practical situations, including hyperspectral imaging, 
this constraint is not satisfied for all columns of H, e.g., for pixels with low luminosity; 
see a discussion in [20].

In matrix factorization, it could be argued that in general QF (W ) is not a good 
measure to assess the quality of a solution W , since any W such that conv(X) ⊂ conv(W )
implies QF (W ) = 0, even if W is very different from the ground truth W ∗. In our case 
though, QF (W ) is relevant, since all the considered algorithms generate solutions W
which columns are close to conv(X). Indeed, VCA, SPA and ALLS generate solutions 
within conv(X). This is not always the case for SVCA and SSPA, because of the use of 
the median (a non-linear operator) for the aggregation of the columns of X. In practice 
though, they find solutions close to conv(X).

5. Numerical experiments

In this section, we study and compare the performance of ALLS, SVCA, and SSPA. 
We first consider synthetic data sets. Then we tackle the unmixing of real-world hy-
perspectral images and the extraction of features in facial images data sets. The code 
and data are available online.1 All algorithms are implemented in Matlab and run on a 
computer with an i5-8350U processor.

5.1. Synthetic data sets

In this section, we study the behavior of smooth separable NMF algorithms in several 
experimental setups. To build synthetic data sets, we first build W ∈ R224×10

+ by selecting 
10 columns from the USGS hyperspectral library2 using SPA. The condition number of 
the corresponding matrix is κ(W ) = 33.88. Then, we generate a random H ∈ R10×1000

+
such that H = [I10, H ′], meaning there is at least one pure data point for every vertex. 

1 https://gitlab .com /nnadisic /smoothed -separable -nmf.
2 https://www .usgs .gov.

https://gitlab.com/nnadisic/smoothed-separable-nmf
https://www.usgs.gov
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Table 1
Generating the columns of H ∈ R10×n using the Dirichlet 
distribution of parameter αe, this table reports the ex-
pected percentage, δ, of pure data points close to each 
vertex. The jth data point is considered close to the ith 
vertex when H(i, j) > 0.95, hence this table reports the 
expected value of 1

n

∣∣{j | H(i, j) > 0.95}
∣∣ for all i. Since 

the Dirichlet distribution has the same parameters for all 
i, namely α, this expected value is the same for all i.
α 0.01 0.02 0.05 0.1 0.2 0.5
δ 7.7% 5.9% 2.7% 0.75% 0.06% 0%

The coefficients of H ′ follow a Dirichlet distribution, which is usually a good model for 
the abundances in HSI [35], of parameters αe, where α controls the proportion of data 
points close to the vertices, see Table 1. The larger α, the denser the columns of H and 
the less likely the ‘proximal latent points’ assumption is to be satisfied for large p.

Finally, we let X = WH +N where N is a normalized Gaussian noise: Given a noise 
level ε, we first generate N(i, j) ∼ N (0, 1) for all (i, j), then set

N ← ε
‖WH‖F
‖N‖F

N,

so that ε is the norm of the noise relative to WH: ‖N‖F = ε‖WH‖F .
Given the noisy data matrix X and a parameter p, we can compute W ′ with the 

algorithms ALLS, SVCA, and SSPA. We note ALLS(p), SVCA(p) and SSPA(p) these 
algorithms run with parameter p. Given the computed solution W ′, we report the mean 
removed spectral angle (MRSA) to assess its quality. Given two spectral signatures x, y ∈
Rm, the MRSA is defined as follows:

φ(x, y) = 1
π

arccos
(

(x− x̄)�(y − ȳ)
‖x− x̄‖2‖y − ȳ‖2

)
∈ [0, 1],

where for a vector z ∈ Rm, z̄ = (
∑m

i=1 zi)e and e is the vector of all ones. Given two 
matrices, here the groundtruth W and the estimate W ′, we define the MRSA as

MRSA(W,W ′) =
r∑

j=1
φ(W (:, j),W ′(:, j)),

after the columns of W ′ have been reordered so as to minimize the MRSA. The smaller 
the MRSA, the better the solution. For ALLS and SVCA, on a given data set, we run 30 
trials and keep the median of the results. SSPA is deterministic so we only run it once. 
Unless stated otherwise, SVCA and SSPA are equipped with the median aggregation. In 
the following, we consider several experimental setups to highlight the property of these 
algorithms.

In Fig. 1, we test ALLS, SVCA, and SSPA with different values of the parame-
ter p, when the noise ε varies. Note that SVCA(1) and SSPA(1) are equivalent to 



N. Nadisic et al. / Linear Algebra and its Applications 676 (2023) 174–204 189
Fig. 1. Results for ALLS, SVCA, and SSPA for different values of p, when ε varies, for fixed n = 1000
and purity α = 0.05 (δ = 2.7%). Values for ALLS and SVCA are the medians over 30 trials. Note that 
ALLS(1)=SVCA(1)=VCA. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

their non-smoothed version VCA and SPA. Also note that ALLS(1) is equivalent to 
SVCA(1) and thus VCA. In this experiment, we observe that smoothing improves the 
algorithm performances. However, for ALLS, a parameter p set too large can in fact 
worsen the solution, especially when the noise level is small. Also, ALLS is outperformed 
by SVCA and SSPA; this will be confirmed in experiments on hyperspectral images in 
Section 5.2.

In Fig. 2, we compare the stability of ALLS and SVCA when ε varies by showing the 
best, median, and worst result among 30 runs. We also compare them to the MRSA of the 
result of SVCA that has the smallest reconstruction error, QF (W ′), and to SSPA which is 
deterministic. We see that the best result from ALLS is slightly better than other results. 
This is due to the use of the mean as an aggregation method, which works better with 
the centered Gaussian noise of the synthetic data,3 see Fig. 4. However, the algorithm 
is less stable, as its median and worst results are worst than SVCA. With SVCA, the 
median results are close to the best. Also, the best results in terms of reconstruction error 
generally coincides with the best one in terms of MRSA, showing that the reconstruction 

3 Using the mean aggregation instead of the median aggregation in SVCA, its best MRSA result is always 
better than the best MRSA of ALLS in this experiment.



190 N. Nadisic et al. / Linear Algebra and its Applications 676 (2023) 174–204
Fig. 2. Comparison of SSPA with best, median, and worst result for ALLS and SVCA among 30 runs, when 
ε varies, for fixed n = 1000, purity α = 0.05 (δ = 2.7%) and parameter p = 25. “Best err SVCA” represents 
the MRSA of the solution of SVCA that has the smallest relative reconstruction error.

error is a good proxy for the tested algorithms, as evoked in Section 4 (this will be useful 
when the groundtruth is unknown and the MRSA cannot be computed, for example in 
Section 5.2). The deterministic algorithm SSPA produces results that are slightly better 
than the median result of SVCA. However, the best result from SVCA is better than the 
result from SSPA for most noise levels.

In Fig. 3, we compare SVCA and SSPA with higher values of p when ε varies. Again, we 
observe that the smoothing improves the algorithm performances, but an overestimated 
p worsens it. Interestingly, when the noise is very high (above 10%), smoothed algorithms 
outperform their non-smoothed counterpart even when p is overestimated. This is due 
to the fact that the value of p required to obtain the best estimation of W is not only 
determined by the purity but also by the noise level. For instance, consider a toy example 
with four data points and r = 2:

X = WH + N = W

[
1 0 0.99 0.01
0 1 0.01 0.99

]
+ N.

That is, x3 and x4 are not pure-pixel but are almost pure. Let us further assume N to 
follow a centered Gaussian law. If ε = 0 (noiseless mixing), the best estimation of W (:, 1)
(resp. W (:, 2)) from X is to extract X(:, 1) (resp. X(:, 2)), yielding a perfect estimation. 
On the other hand, if ε is large relatively to the distance of W (:, 1) and W (:, 2), it is 
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Fig. 3. Results for SVCA and SSPA for different values of p, when ε varies, for fixed n = 1000 and purity 
α = 0.05 (δ = 2.7%), Values for SVCA are the medians over 30 trials.

better to choose as an estimate of W (:, 1) (resp. W (:, 2)) the average – or median – of 
X(:, 1) and X(:, 3) (resp. X(:, 2) and X(:, 4)), as the noise power is then divided by two.

In Fig. 4, we compare SVCA and SSPA equipped with either the median or the mean 
aggregation, for fixed data setup and when p varies. The reverse bell curve shows that the 
performance of the algorithms improves gradually as p grows, until it reaches an optimal 
value, after which the performance gradually worsens. We observe that the algorithms 
equipped with the median are more robust to an overestimation of p, but with the mean 
they are slightly better for smaller p. However the difference is small; this is expected as 
this synthetic data is generated with centered Gaussian noise, and as such the mean is 
expected to give the best estimation when p is well chosen. The difference is more obvious 
in hyperspectral images, for which the median aggregation always performs better than 
the mean aggregation; see Section 5.2 and Fig. 7.

In Fig. 5, we compare SVCA and SSPA equipped with either the median or the mean 
aggregation, for fixed data setup and when p varies, but where the synthetic data has been 
generated using the Poisson distribution instead of Gaussian noise. This data generation 
accounts for a counting process [36]. Given a noise level ε, we first generate random 
matrices W and H as above. Then we compute c = 1

mean(WH)ε2 , where mean(WH) is 
the average of the entries of WH, and use the Matlab function poissrnd to generate a 
noisy data matrix X = 1

cpoissrnd(cWH), that is, the entry Xi,j of X follows a Poisson 
distribution of parameter c(WH)i,j , divided by c. This choice of c allows one to control 
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Fig. 4. Results for SVCA and SSPA using either the median or the mean to average points, when p varies, 
for fixed n = 1000, purity α = 0.05 (δ = 2.7%), and noise ε = 0.05. Values for SVCA are the medians over 
30 trials.

the norm of the noise relative to the groundtruth WH (recall that the expectation 
of the Poisson distribution of parameter λ is λ, and the variance is λ). The expected 
value of the entries of X remains unchanged (namely, mean(WH)), while the standard 
deviation is equal to ε mean(WH). Hence, the entries of X are close to the interval 
[WH − ε, WH + ε], and we have that ‖X −WH‖F /‖WH‖F ≈ ε. We observe again that 
the smoothed algorithms outperform significantly VCA and SPA. A notable difference 
compared to experiments with Gaussian noise is that, with Poisson noise, the algorithms 
equipped with the median aggregation give, in general, better results than with the mean. 
The median aggregation is still more robust to an overestimation of p. As opposed to 
previous experiments, the median results of SVCA are better than the results of SSPA. 
This is expected because the selection step of SSPA uses the �2-norm, which makes it 
more sensitive to non-Gaussian noise.

In Fig. 6, we compare SVCA and SSPA when p varies in setups with different values 
of purity α. As expected, we observe that the shapes of the curves are similar, and that 
for a fixed noise level the value of the parameter p leading to the lowest MRSA decreases 
as the parameter α increases.

To summarize, our synthetic experiments highlight that the two proposed algorithms 
consistently obtain better results than ALLS. They furthermore show that SVCA and 
SSPA outperform VCA and SPA when p is well chosen. Although the choice of p is 
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Fig. 5. Results for SVCA and SSPA using either the median or the mean to average points, when p varies, 
for Poisson noise of level ε = 0.1, for fixed n = 1000, purity α = 0.02 (δ = 5.9%). Values for SVCA are the 
medians over 30 trials.

important, as a bad value can worsen the results compared to the non-smoothed algo-
rithms, the use of the median aggregation instead of the mean makes the algorithms less 
sensitive to this choice. The use of the median is also more adapted to sparse, Laplace 
or Poisson noises, whereas the mean gives better results in the case of centered Gaussian 
noise.

5.2. Hyperspectral images

In this section, we apply ALLS, SVCA, and SSPA to the unmixing of hyperspectral 
images, as described in Section 1. We consider three commonly used hyperspectral im-
ages,4 San Diego, Urban, and Terrain. In hyperspectral data sets, extremely large values 
are commonly associated with sensor noise or interference. To avoid overfitting the fac-
torizations to these interferences, the pixels corresponding to the 10 largest values of any 
wavelength range are zeroed out. Extreme pixels generally have extreme values in many 
wavelength ranges at once, so this preprocessing results in the removal of less than 0.1% 
pixels. The characteristics of these images are summarized in Table 2.

4 Downloaded from http://lesun .weebly.com /hyperspectral -data -set .html.

http://lesun.weebly.com/hyperspectral-data-set.html
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Fig. 6. Results for SVCA and SSPA for different values of purity α, when p varies, for fixed n = 1000 and 
noise ε = 0.05. Values for SVCA are the medians over 30 trials.

Table 2
Summary of the hyperspectral images studied in this work.

Data set m n r Pixels zeroed out
San Diego 158 400 × 400 = 160000 8 19
Urban 162 307 × 307 = 94249 6 68
Terrain 188 500 × 307 = 153500 6 107

Given a data matrix X ∈ Rm×n, we compute W ∈ Rm×r with the three algorithms. 
We then compute for each algorithm H ∈ Rr×n with a standard coordinate descent 
algorithm [37] and measure the relative reconstruction error ‖X − WH‖F /‖X‖F . The 
smaller the error, the better the solution.

Some works such as [38] proposed groundtruths for these hyperspectral images, but 
they are computed using numerical methods and as such do not necessarily represent 
reality. Therefore, we lack a reference to assess the quality of the reconstruction, for 
example by measuring the MRSA. This is why we use the relative reconstruction error 
as the criterion for the quality of a solution. This is a satisfying criterion, as illustrated 
in Fig. 2.

In Table 3, we report results from the experiments. We observe that, when p > 1, 
the result is always improved. When p is too large, however, the solution can be worse 
than for p = 1, as expected. We observe that the best p varies between the algorithms. 
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Table 3
Relative reconstruction errors (minH≥0 ‖X −WH‖F /‖X‖F ) resulting from the unmixing of hyperspectral 
images with ALLS, SVCA, and SSPA, with different values of parameter p. SVCA(1) and SSPA(1) are 
equivalent to VCA and SPA. For non-deterministic algorithms ALLS and SVCA, we show the minimum, 
median, standard deviation, and maximum of the error over 30 trials.

p San Diego Urban Terrain

Min Med ± std Max Min Med ± std Max Min Med ± std Max

ALLS 1 4.72 5.60 ± 0.67 8.25 5.39 9.14 ± 1.93 12.26 3.94 4.88 ± 0.73 7.08
100 4.27 5.35 ± 1.72 10.91 6.37 9.28 ± 3.18 19.40 3.84 4.87 ± 0.87 6.85
1000 4.64 6.14 ± 1.12 8.68 6.78 9.71 ± 2.16 14.20 3.84 4.71 ± 1.19 8.81
2000 4.87 5.91 ± 1.62 11.79 6.96 9.93 ± 1.60 12.85 3.96 4.89 ± 0.88 7.63
5000 5.51 7.42 ± 2.64 13.88 7.68 10.37 ± 1.89 14.98 4.28 5.26 ± 0.80 6.88

SVCA 1 3.95 5.42 ± 0.61 6.90 6.25 9.13 ± 1.78 12.23 4.03 5.11 ± 1.25 8.70
100 3.44 4.92 ± 0.77 6.96 5.08 6.10 ± 1.27 10.13 3.52 4.04 ± 0.67 6.52
1000 3.82 4.95 ± 0.59 6.82 5.82 6.77 ± 1.23 10.84 3.18 3.92 ± 0.38 4.70
2000 3.73 4.40 ± 0.51 5.81 5.66 6.36 ± 0.67 7.83 3.38 4.12 ± 0.45 4.95
5000 4.01 4.66 ± 0.73 7.01 5.69 6.94 ± 1.21 11.74 3.70 4.19 ± 0.30 4.82

SSPA 1 5.90 9.46 5.01
100 9.29 6.65 4.03
1000 5.82 6.22 8.05
2000 4.32 6.11 7.86
5000 4.65 5.91 5.38

For example, with Terrain, ALLS and SVCA perform best with p = 1000 while SSPA 
performs best with p = 100. Larger values of p seem to give more stable results, as it 
produces solutions with smaller deviations. SVCA outperforms ALLS in all cases. SSPA 
performance is comparable to SVCA, and generally produces a better result than the 
median of SVCA, but never better than the best result obtained by SVCA.

In a few cases, SSPA produces solutions with a large error, for example in San Diego 
for p = 100 and Terrain for p = 1000. We believe this behavior to originate from small 
groups of points with a very large norm, that could correspond to a rare material or to 
interference.

In Fig. 7, we compare SVCA and SSPA using either the median or the mean for 
the unmixing of the hyperspectral image Urban, with a varying p. We observe that 
p > 1 always leads to better results for all algorithms and all data sets. Also, the median 
aggregation almost always gives better results than the mean. While the curves are not as 
regular as with synthetic data, we observe a similar tendency that the solution improves 
when p grows, until a certain point or zone after which it worsens again. However, SSPA-
med has an irregular behavior for p = 200. This can be explained by the fact that SSPA 
is a greedy algorithm, so if it makes a bad choice in the first iterations, it will likely never 
compensate. Also, it is deterministic, so the error is not averaged over several runs.

In Fig. 8, we show the abundances maps corresponding to the unmixing of Urban; 
the corresponding spectral signatures can be found in the supplementary material. They 
indicate the proportion of every of the 6 extracted endmembers in the pixels of the image. 
We see that the smoothed algorithms obtain a better separation than the non-smoothed 
ones. For example, the fourth endmember extracted by SVCA and SSPA corresponds 
to grass, and it is well separated by these algorithms, while VCA and SPA mix it with 
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Fig. 7. Results of the unmixing of the hyperspectral image Urban. Values for SVCA are the medians over 
30 trials. One point is out of the plot; for p = 200, SVCA-med has an error of 14.55%.

asphalt and dirt. The second endmember extracted by SVCA and SSPA corresponds to 
metallic rooftops, and it is well separated while VCA mixes it with other materials and 
SPA does not clearly identify it and produces a blurred picture.

In the supplementary material, we provide additional experiments, namely, the sensi-
tivity to p of SVCA and SSPA, and the abundance maps and spectral signatures of the 
different algorithms for the hyperspectral images Terrain and San Diego.

5.3. Facial images

A popular application of NMF is the extraction of facial features, such as eyes, noses 
and lips, in a set of images, because it was first introduced in the seminal paper of Lee and 
Seung [11]. In this application, each row of X is a vectorized facial image, and an NMF, 
WH ≈ X, extracts vectorized facial features as the rows of H. Separability makes sense 
in this context: it requires that, for each facial feature, there is at least one pixel that 
is only contained in that facial feature; see [4, p. 209] for a discussion and a numerical 
example. For the proximate latent points assumption to make sense, we need for each 
facial feature several pixels that appear mostly in that feature. Hence the more pixels 
in the images, the more likely this assumption will hold and the larger the parameter p
can be chosen; this will be illustrated on the numerical examples below.
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Fig. 8. Abundance maps of the unmixing of the Urban hyperspectral images (that is, reshaped rows of H) 
with different algorithms. Endmembers have been reordered for easier comparison. Parameters p have been 
chosen as the best from Fig. 7. Error corresponds to minH≥0 ‖X −WH‖F /‖X‖F . For VCA and SVCA, we 
show the best solution over 30 trials.

Let us now apply ALLS, SVCA, and SSPA to extract facial features on four widely 
used data sets; see Table 4. Note that the first two data sets (CBCL, Frey) have signif-
icantly fewer pixels than the last two (ORL, UMIST) and hence we expect that p can 
be chosen larger for the last two. We choose r = 10 for CBCL and Frey, and r = 20 for 
ORL and UMIST.

Table 5 shows the results from the experiments of facial images data sets. The recon-
struction errors are roughly between 15% and 25%, meaning that this type of data does 
not follow closely the NMF model. However, this model is still able to extract meaning-
ful features as we show below, and the smoothed separable NMF algorithms do produce 
better results than the non-smoothed ones. We observe that the result is consistently 
improved for p > 1 and p not too large. SVCA outperforms ALLS in all cases. The best 
solution from SVCA is always better than the solution from SSPA, and the median so-
lution from SVCA is better than the solution from SSPA for all data sets except Umist. 
In this experiment the best p is the same for SVCA and SSPA in most cases. For the 
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Table 4
Summary of the facial images studied in this work.

Data set m (# faces) n (# pixels) r

CBCL1 2429 19 × 19 = 361 10
Frey2 1965 28 × 20 = 560 10
ORL3 400 112 × 92 = 10304 20
UMIST2 565 112 × 92 = 10304 20
1 https://gitlab .com /ngillis /nmfbook /-/blob /master /

data %20sets /CBCL .mat.
2 http://www .cs .toronto .edu /~roweis /data .html.
3 https://cam -orl .co .uk /facedatabase .html.

Fig. 9. Results of the processing of the facial images data set ORL. Values for SVCA are the medians over 
30 trials.

data sets with fewer pixels (CBCL, Frey), a value of p larger than 20 deteriorates the 
performance of SVCA and SSPA. This makes sense since there are fewer than 600 pixels, 
and hence the rule of thumb that p 
 n

r is not respected (recall that p = n
r would be 

the extreme case where there are exactly nr data points close to each column of W ). For 
the data sets with more pixels (ORL, UMIST), p can be rather large and still leads to a 
decrease in the error for p up to 200.

Fig. 9 reports the relative errors for SVCA and SSPA on the data set ORL, using 
the mean and the median aggregation, for various values of p. Figures for other data 
sets are included in the supplementary material. We observe that, as for the synthetic 
data sets and hyperspectral images, the smoothed algorithms allow one to significantly 

https://gitlab.com/ngillis/nmfbook/-/blob/master/data%20sets/CBCL.mat
https://gitlab.com/ngillis/nmfbook/-/blob/master/data%20sets/CBCL.mat
http://www.cs.toronto.edu/~roweis/data.html
https://cam-orl.co.uk/facedatabase.html
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Table 5
Relative reconstruction errors (minH≥0 ‖X −WH‖F /‖X‖F ) in percent resulting from 
the processing of facial image datasets with ALLS, SVCA, and SSPA, with different 
values of parameter p. SVCA(1) and SSPA(1) are equivalent to VCA and SPA. For non-
deterministic algorithms ALLS and SVCA, we show the minimum, median, standard 
deviation, and maximum of the error over 30 trials.

p CBCL Frey
Min Med ± std Max Min Med ± std Max

ALLS 1 19.36 20.08 ± 0.33 20.95 21.05 22.38 ± 0.58 23.83
5 18.53 19.60 ± 0.51 20.41 20.75 22.32 ± 0.73 23.96
10 18.67 19.44 ± 0.78 21.88 21.30 22.85 ± 0.85 24.57
20 19.34 20.28 ± 1.17 23.83 22.30 24.05 ± 1.10 27.42

SVCA 1 19.25 19.81 ± 0.31 20.48 20.99 22.18 ± 0.64 24.02
5 18.72 19.21 ± 0.34 20.14 20.69 21.57 ± 0.52 22.85
10 18.48 18.84 ± 0.35 19.76 20.68 21.29 ± 0.43 22.57
20 18.44 18.95 ± 0.25 19.55 20.79 21.70 ± 0.45 22.71

SSPA 1 20.76 22.57
5 20.05 21.65
10 19.63 21.32
20 20.83 21.58
p ORL Umist

Min Med ± std Max Min Med ± std Max
ALLS 1 23.64 24.08 ± 0.18 24.35 15.38 16.00 ± 0.25 16.46

50 22.87 23.62 ± 0.42 24.92 15.34 15.91 ± 0.32 16.48
200 23.34 24.33 ± 0.60 25.93 16.27 16.96 ± 0.54 18.87
400 24.50 25.31 ± 0.45 26.56 17.28 18.21 ± 0.49 19.07

SVCA 1 23.34 24.04 ± 0.32 24.70 15.40 15.95 ± 0.24 16.28
50 22.31 22.89 ± 0.32 23.63 14.95 15.37 ± 0.28 16.08
200 22.22 22.70 ± 0.29 23.53 14.90 15.37 ± 0.25 15.91
400 22.42 23.00 ± 0.34 23.86 15.29 15.85 ± 0.30 16.46

SSPA 1 25.76 16.56
50 24.14 15.72
200 23.50 14.98
400 24.50 15.40

and consistently reduce the error, given that p is not too large. The difference between 
using the mean and the median is not significant, although the mean seems to perform 
slightly better for SVCA. The reason is that there is no outlier in these data sets, and 
the Gaussian assumption for the noise is reasonable. As opposed to the experiment on 
hyperspectral data, here SVCA outperforms SSPA on average.

As an illustration, Fig. 10 shows the facial features extracted by VCA, SVCA, SPA, 
SSPA. They represent the proportion of every extracted facial feature in the pixels of the 
images. We observe that SVCA and SSPA, apart from reducing the error as discussed 
above, also produce sharper facial features. These features are more clearly delimited 
and separated, they grasp more finely the parts of the human face such as eyes, nose, 
and chin.

5.4. Discussion

Let us make some additional points regarding SVCA and SSPA.
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Fig. 10. Abundance maps of the unmixing of the facial images data set ORL (that is, reshaped rows of 
H) with different algorithms. Features have been reordered for easier comparison. Parameters p have been 
chosen as the best from Fig. 9. Error corresponds to minH≥0 ‖X −WH‖F /‖X‖F . For VCA and SVCA, we 
show the best solution over 30 trials.

Which algorithm should one use? SVCA allows to generate different solutions, among 
which the best solution w.r.t. the reconstruction error can be found. Therefore, in practice 
and when time and resources allow, we recommend running SSPA once and SVCA several 
times, with different values of p, and keep the best solution.
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Which aggregation should one use? If the noise present in the data is assumed to follow 
a Gaussian distribution, the mean aggregation is more adapted. In case of sparse noise or 
in the presence of outliers, then the median aggregation will perform better. Apart from 
the average and the median, other aggregation methods could perform better depending 
on the noise statistics and data set at hand. For instance, [39] uses an aggregation 
on manifold in the context of sparse matrix factorization to better take into account 
the structure of the columns of W . Exploring more advanced aggregation methods for 
smoothed separable NMF would be an interesting direction for future research.

How to select p? Choosing a value for the parameter p is crucial and not trivial. Cur-
rently, one needs to have a prior knowledge on the number of data points close to the 
vertices, or use an empirical trial-and-error method. A strategy to determine the best 
p for a given setting is a particularly interesting direction of research. It would also be 
particularly meaningful to consider a different value of p for every vertex, as the number 
of proximal latent points typically varies for each vertex.

Spectral variability in blind HU. In blind HU, an issue with separable NMF algorithms 
is that they identify a single pixel to represent a material. It is however well-known that 
the spectral signature of an endmember may vary across the pixels of the image, for 
example because of differences in light intensity or orientation. This is known as spectral 
variability. By construction, most separable NMF algorithms, such as VCA and SPA, 
will identify pure pixels that do not represent well the average behavior of a material, 
but rather a pure pixel located at the boundary of the convex hull of the variations 
of the spectral signature of that endmember. Therefore, working on the smoothed data 
set, which averages every subset of p data points, allows to better represent this average 
behavior.

Designing other smoothed separable NMF algorithms. The proximal latent points as-
sumption could be used to generalize other separable NMF algorithms. In this paper, 
we validated the idea on the two most widely used separable NMF algorithms, namely 
VCA and SPA, but the same idea can be applied to any separable NMF algorithms such 
as SNPA [20].

6. Conclusion

In this work, we investigated the smoothed separable NMF model, that strengthens 
the separability assumption by assuming the presence of several data points nearby each 
column of the basis matrix W . Inspired by the existing algorithm ALLS, we developed 
smoothed variants of two separable NMF algorithms, namely VCA and SPA. Empirically, 
we showed that our smoothed methods outperform both the non-smoothed ones and 
ALLS, for both synthetic data sets and for two real-world applications, namely the 
unmixing of hyperspectral images and feature extraction in facial images data sets. We 
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showed that the proximal latent points assumption is verified in hyperspectral images 
and in facial images data sets, and that smoothed separable NMF algorithms are a more 
effective tool for these applications.

Further works include the design of other smoothed separable NMF algorithms, and 
the use of SVCA and SSPA for other applications, in particular in machine learning [9,10]. 
Exploring new aggregation methods and smarter ways to choose the parameter p are also 
relevant directions for future research.
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